HOLOMORPHIC QUILLEN DETERMINANT LINE BUNDLES ON INTEGRAL COMPACT KAHLER MANIFOLDS
نویسندگان
چکیده
منابع مشابه
Para-Kahler tangent bundles of constant para-holomorphic sectional curvature
We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...
متن کاملHolomorphic bundles on diagonal Hopf manifolds
Let A ∈ GL(n,C) be a diagonal linear operator, with all eigenvalues satisfying |αi| < 1, and M = (Cn\0)/〈A〉 the corresponding Hopf manifold. We show that any stable holomorphic bundle on M can be lifted to a G̃F equivariant coherent sheaf on C, where G̃F ∼= (C) is a commutative Lie group acting on C and containing A. This is used to show that all stable bundles onM are filtrable, that is, admit a...
متن کاملMath 396. From integral curves to integral manifolds 1. Integral manifolds for trivial line bundles
Let M be a C∞ manifold (without corners) and let E ⊆ TM be a subbundle of the tangent bundle. In class we discussed the notion of integral manifolds for E in M (as well as maximal ones), essentially as a generalization of the theory of integral curves for vector fields. Roughly speaking, in the special case that E is a trivial line bundle we are in the setup of integral curves for (non-vanishin...
متن کاملHolomorphic Approximation on Compact Pseudoconvex Complex Manifolds
Let M be a smoothly bounded compact pseudoconvex complex manifold of finite type in the sense of D’Angelo such that the complex structure of M extends smoothly up to bM . Let m be an arbitrary nonnegative integer. Let f be a function in H(M) ∩Hm(M), where Hm(M) is the Sobolev space of order m. Then f can be approximated by holomorphic functions on M in the Sobolev space Hm(M). Also, we get a ho...
متن کاملHarmonic bundles on quasi-compact Kähler manifolds
On Kähler manifolds, there exist deep relationships between holomorphic and harmonic objects, between algebraic data and analytic variational principles. For example, through the work of Narasimhan-Seshadri [NS], Donaldson [D1, D2, D3] and Uhlenbeck-Yau [UY] we know that an irreducible holomorphic bundle on a compact Kähler manifold X possesses a Hermite-Einstein (H-E) metric if and only if it ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2013
ISSN: 0033-5606,1464-3847
DOI: 10.1093/qmath/has040